
Neuroscience Gateway Development
Author: Gokul Swamy (Del Norte High School ‘16) 

Mentors:  Amit Majumdar: NSG Principal Investigator, SDSC, La Jolla  CA, 92093
Subha Sivagnanam: NSG Co- PI, SDSC, La Jolla  CA, 92093

Abstract

Conclusion

Introduction Methods

Story

Our work this summer at the San Diego Supercomputer Center can be divided into three sections: running models, improving the NSG Portal, and a scaling study. First, we 
explored how supercomputers can be used to simulate neurons firing by running models directly on the Comet supercomputer. After we achieved a greater understanding of 
computationally modeling the brain, we proceeded to work on improving the NSG Portal. The portal, which gives researchers free access to XSEDE resources like SDSC’s Comet, 
allows the uploading of models and the review of their outputs. I worked with my mentors to improve the usability and design of the portal. We made it easier to access current 
NSG news and generally modernized and simplified the appearance of the portal. After improving the portal, we proceeded to run a balanced and unbalanced model through 
the portal of the brain’s mu rhythms on an increasing number of cores in a scaling study. We discovered that both model’s runtimes decreased polynomially with the number of 
cores, with the balanced model running quicker.

The main chunk of our research 
focused on improving the 
Neuroscience Gateway, an online 
portal for neuroscientists to easily 
run their models on supercomputers. 
Our work made it easier for scientists 
to conduct independent computer-
assisted research. We also performed 
a scaling study to see how quickly 
models run on different numbers of 
cores which showed how the large 
number of cores supercomputers 
possess make complex computations 
feasible.

For running models, we 
used the SLURM (Simple 
Linux Utility for 
Resource Management) 
to run bash scripts on 
Comet. Slurm took our 
requests and submitted 
them to a queue where 
they were eventually 
run.

For improving the 
Portal, we used the 
web development 
languages of HTML, 
CSS, and Javascript to 
make the UX (User 
Experience) less 
complex.

For our scaling study, 
we used a language 
called Neuron, 
developed by 
researchers at Yale, 
to model the brain 
performing different 
types of activity.

Our research project answered much needed calls for a revamped NSG website making it easier for neuroscientists to access information and for my mentors to update 
information. We learnt about how to model the brain in Yale’s Neuron language, learnt what kind of models can be run through the Portal, and discovered how models scale on 
supercomputers. We were able to improve a resource and then use it to answer our own questions.

Step 1: We ran a model directly on Comet to 
see how the brain can be simulated using a 
computer. We submitted a batch job to a 
resource manager called SLURM and then 
collected the output

My mentors are interested to see the 
relationship between runtime and the 
number of cores in which the model is run 
on. In addition, my mentors wanted a more 
clean and easily updatable platform for 
neuroscientists looking for information on 
the NSG website.

The goal of our project was to explore how 
computers can be used to model the brain, 
make it easier for professionals to do so, and 
then see how models reacted to different 
conditions.

Step 2: Using our knowledge of 
running models, we 
redesigned the NSG Portal 
website to be more user and 
admin friendly. We opted to go 
for a more clean and 
modernized look to capture 
the cutting-edge nature of the 
neuroscience performed 
through the portal. We used 
HTML, CSS, and Javascript to 
modify the files hosted on our 
personal SDSC directories.

Step 3: We tested over 200 models for 
compatibility with the NSG. However, only models 
that created a file output were compatible as we 
could not access the GUI’s (graphical user 
interfaces) that were pulled up. Balanced and 
unbalanced versions of the  Jones model were run 
on Comet to test how model run time was related 
to the number of cores, a relationship we 
predicted was linear. Instead run-time was found 
to be cubically decreasing for both while the 
setup time (time for the model to read files and 
initialize structures) increased for the
balanced model while staying roughly
constant for the unbalanced version.
The balanced model ran quicker.


